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A Unified Hybrid-Mode Analysis for Planar
Transmission Lines with Multili~yer

Isotropic/Anisotropic Substrates

RAAFAT R. MANSOUR, MEMBER, lEEE, AND ROBERT H. MACPHIE, SENIOR MEMBER, IEEE

Abstract — A unified hybrid-mode analysis is presented for determining

the propagation characteristics of multiconductor, multilayer planar

transmission lines. Tbe analysis employs the conservation of complex
power technique, and the emphasisis on numericaf efficiency and simpli-
city. Numerical results, for f inline and microstip conf@rations, aim at
the clarification of the effects of the metalizatiou thickness, dielectric
anisotropy, and snbstratemounting grooves.

I. INTRODUCTION

D URING THE PAST several years, a variety of tech-

niques have been published for the characterization

of planar transmission lines, techniques wherqin there has

been always a compromise between accuracy and numeri-

cal efficiency. In many cases, simplified approximations

were introduced to achieve a good numerical efficiency at

the expense of the accuracy. For example, most published

techniques do not take into account the effect of the

substrate mounting groove. Elsewhere numerous results

are reported for idealized structures with zero metallization

thickness.

With the increasing complexity of microwave and mil-

limeter-wave circuit design, attention has been directed in

recent years to generalized approaches that can treat a

variety of planar transmission lines with more complicated

configurations. Thus, in developing a new technique the

“generalization” has become another challenging factor to

be considered in addition to the accuracy and numerical

efficiency.

Among the published rigorous techniques for analyzing

planar transmission lines are the spectral-domain tech-

nique and the singular integral equation technique [1], [2].

Although these techniques have a very good numerical

efficiency, they do not include the effects of metallization

thickness and substrate mounting grooves. The metal-

lization thickness has been taken into account by Beyer [3]

and Vahldieck [4] using the mode-matching technique, and

also by Kitazawa and Mittra [5] using the network

analytical method. The effect of mounting grooves has
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been considered as well in [3] and [4], but these methods

were presented to treat only finline structures. The effect

of the metallization thickness on the propagation char-

acteristics of multiconductor planar transmission lines

has been approximately taken into account by Saad and

Schunernann [6]. However, the approximation involved in

this method is only valid for structures with large slot

widths.

Very recently, an approach based on the mode-matching

technique has been presented by Vahldieck and Borne-

mann in [7] to calculate the propagation constant, and

extended by Bornemann and Arndt in [8] to calculate the

characteristic impedance. However, as will be shown in

Section II, this approach has a very poor numerical ef-

ficiency. Moreover, in view of the study given in [9] on the

convergence of the modal analysis numerical solution, the

mode-matching formulation used in this approach suffers

from serious convergence problems and may fail to provide

accurate results for structures with relatively small metal-

lization thickness.

In this contribution, we present the details of a hybrid-

mode approach for evaluating the propagation constan@

of the dominant and the higher order modes and the

characteristic impedance for planar transmission lines with

multiconductor and multilayer isotropic/anisotropic sub-

strates. Besides the versatility and flexibility of this ap-

proach in treating complicated structures, it is numerically

efficient and it includes the effects of the metallization

thickness and substrate mounting grooves.

II. FORMULATION OF THE PROBLEM

A generalized planar guiding structure is shown in Fig.

1. lt consists of an arbitrary number of metallic strips

deposited on various interfaces of a multilayer isotrop-

ic/anisotropic dielectric substrate. The hybrid nature of

the electromagnetic field in this structure can be attributed

to the coupling between LSE and L.SM modes. By

considering the propagation to take place along the trans-

verse direction, the discontinuities at the various vertical

planes serve to couple the LSE and LSM modes, and the

hybrid modes are formed as a result of the repeated

reflections of LSE and LSM modes from the short-circui-

ted ends and the discontinuities.
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Fig. 1. A generalizedplanar guiding structure.

The first step in the analysis uses the conservation of

complex power technique (CCPT) to treat the problem of

scattering at the N-furcated waveguide discontinuity y shown

in Fig. 2 for LSE and LSM excitation. The LSE and LSM

modes may be derived from magnetic- and electric-type

Hertzian potential functions [10] having single components

directed normal to the xz plane. The appropriate solutions

for fi~,, and fl~,, in the ith guide are given by

The propagation constant along the z direction is repre-

sented by the exponential factor e–~fl’ and assumed to be

the same in all guides and for both LSE and LSM modes.

The transverse components of the fields may then given by

1+11_e
‘“ Kc,,,,

jp, _ ~:
K 1,111

(3b)
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Fig. 2. An N-furcated waveguidejunction.

Let the transverse fields in the ith guide at y = O, z = O

be represented by an infinite sum of LSE-mode electric

fields <~ and LSM-mode electric fields ~;:

~(x) = ~ A:,,<;(x)+ x 4.?;(X) (4
/ /=(),1,2,. n=l,2,3, . . .

where A ~), and A ~,, are the n th LSE- and LSM-mode

amplitudes respectively in the ith guide, i = 0,1,2,..., N.

Because of the coupling between the LSE and LSM modes,

the three basic matrices H, PA, and PB defined in the

CCPT formulation [11] can be written

[1[

Ah
—.-0 = H:h H:e H;h --- H;h H;e

& H;h H;e H;h --- H;h H;

H=

PA =

(5)

(6)

(7a)

PJ, o 0 —— o 0

0 P;, o —— o 0

00 P:2 —— o 0
PE = ______— . (7b)

1
————.—
ooo —–PjNo

0 0 0 —– o P;N‘1

where k and e refer to LSE and LSM modes, respectively.
X/ is the E-field mode-matching matrix which represents

the coupling between the modes in the large guide and

‘ From now on we will use the following notations: ~ denotesHermi-
tian transpose: * denotes complex conjugate. All column matrices are
denoted with an underbar, and all matrices are in boldface.
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1’ 2’

Fig, 3. A generalizeddiscontinuity

those of the N-furcated guide. P:, P;, P~i, and P;i for

i=l,2,3 ,..., N, are diagonal matrices with diagonal

elements representing the powers carried by unit ampli-

tude LSE and LSM modes in the various guides. If (P LSE

+ P LSM) modes are retained in the large guide whereas

(Q LSE + Q LSM) modes are retained in the N-furcated

guide, the size of the matrices H, PA, and PB are respec-

tively (2P x2 Q), (2P x2 P), and (2Q x2 Q).

The cross-coupling between LSE and LSM modes is

readily understood from (5). However, it is interesting to

note that if we let ~ = O, all the elements of the matrices

H:h and Hzhe for i=l,2,..., N, would vanish. In this case

the LSE and LSM modes become TE and TM modes,

respectively, with a direction of propagation normal to the

xz plane. As has been seen in [11], these modes are not

coupled by scattering at N-furcated parallel-plate wave-

guide junctions.

In view of [9] and after some manipulations, the trans-

mission matrix of the N-furcated discontinuity can be

determined in terms of the three basic matrices H, PA, and

PB derived above for LSE and LSM excitation. The

transmission matrix T ~ of the overall discontinuity shown

in Fig. 3 can then be easily obtained by simple matrix

multiplications.

The next step is to apply the transverse resonance

technique to find the eigenvalue equation for the propa-

gation constant ~. Let the parameters of the overall

transmission matrix T ~ be written as

(8a)

where ~, ~ ( ~, _ ), i =1,2, are the forward (backward) LSE

and LSM mode vectors at planes 11’,22’, as indicated in

Fig. 3. These mode vectors are also related as follows:

A—1+= –L;L-A l_l– zi_=– L; L;i42. (9a)

where

Lc”, L~”, L~l’, and L;~ are diagonal matrices with

diagonal elements given by

~-),
1,)111 =

L-e = ~-l[W2PC-(IIT/1. )2-~2]’121,
1,?7?7

(lOa)

~-l,
1,,,, = L~~,,l = e-/[~2pE-(t’w/t. )~-b~1’/’[2 (lOb).-,

rz=o,l$2 ,..., Q for LSE modes

, ,..., Q for LSM modes.11=1,2 3

In (10), /1 and 12 are, respectively, the lengths of the

waveguide sections I and II shown in Fig. 3. Manipulating

(8) and (9) gives

For a nontrivial solution the determinant should vanish:

Det [L;L; [Tz~– T2~L;L; ] + [T1~– TLL;L; ]] =0.

(12)

The solution for the propagation constant /3 may then be

determined by seeking the zeros of the above determinan-

tal equation.

The size of the eigenvalue matrix given in (12) is (2Q x

2Q), where 2Q is the number of modes (LSE + LSM) used

in the N-furcated section, which is, in most practical

configurations, much less than the number of modes 2P

originally retained in the large guide to satisfy the edge

condition. Since in the waveguide sections I and II indica-

ted in Fig. 3, all the higher order modes are usually below

cutoff, the elements associated with these modes in the

matrices L; and L; are very small. Thus only the first

few modes are needed in the application of the transverse

resonance technique and a size of (2Q X 2Q) for the

eigenvalue matrix is quite enough to provide accurate

results for most practical applications.

In order to compare the numerical efficiency of the

formulation presented in this paper to that reported in [7]

and [8], let us consider as an example a typical unilateral

finline structure with d/b= 0.2, where d is the slot width

and b is the waveguide height. Let us also assume. that

P =25 and Q =5, i.e., (25 LSE modes+ 25 LSM modes)

are retained in the large guide, and (5 LSE modes+ 5 LSM

modes) are retained in the slot region. To avoid the relative

convergence problem, it is noted that these numbers of

modes are chosen such that P\Q = b/d. Thus, the size of

the eigenvalue matrix derived in our formulation is only
(10 x 10). On the other hand, as stated in [7], with 25
summation terms in the large waveguide (25 TE modes+ 25

TM modes) the formulation handles transmission matrices

of size (100x 100) and leads to an eigenvalue equation of

matrix size (50 X 50).

The considerable reduction of the matrix size we have

achieved here is attributed to the use of the improved

transmission matrix formulation for cascaded discontin-

uities, which has been introduced in [9]. This formulation

does not require the use of an equal number of modes, which

makes it possible to impose the edge condition and

consequently guarantees accurate evaluation of the trans-
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mission parameters. Moreover it makes it possible to derive

an eigenvalue matrix of size (2Q X 2Q) rather than (2P x

2P).

111. THE CHARACTERISTIC IMPEDANCE

With the eigenvalue ~ calculated, solving the eigenvalue

equation for the eigenvector gives the field amplitudes in

the various regions which are needed in the calculation of

the characteristic impedance. There has been a consider-

able interest over the past several years in the theoretical

invest igation of the impedance. Most published results,

however, are for structures with zero metallization %hick-

ness and no mounting grooves. In this contribution the

effects of these parameters on the characteristic impedance

based on the voltage–power definition will be investigated.
T/-T/’*

Lr
1

where V is the slot voltage, which is obtained by line

integrating the electric field over the width of the ap-

propriate slot; the summation is on all guides involved and

P, is the power flow in guide i:

(14)

E and H, are, respectively, the transverse components

(with respect to z) of the electric and magnetic fieldls in the

i th guide:

g= E $n+ ~ ~n (15)
/7=0,1,2, n=l,2,3, . .

R= ~ ~~+ ~ lj?n (16)
17= (),1,1, . . . }! =1,2,3, . .

–.X n~

K
— cos —x Q:,, d’,

Li
(17a)

c,zn

–1 nn
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W; are scalar functions given by

Q?, = A~,,+~-Ja;,rY + A~n_e+JO!’nY (l%a)

Wh = Afn~e-Ja!rY – A~n_e+Jd.V, n
(18b)

Q~, = Afn+CJa~IIY + A;n_e+J”~.J (18c)

W(Z = A~.+e-Ja~”v – A’ e~ia~’’-v.{?l— (18d)
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Ai. +, A,~_ denote, respectively, the amplitude of the inci-

dent and the reflected n th mode in guide i. Substituting

(15)-(18) into (14) gives

P, = P,hh + P,”+ P,’h (19)

where

In(20)r,, =2 forn=Oand rH=lforn=l,2, . . . .

Originally, it was assumed that 2P modes were retained

in the large guide and 2Q modes were retained in the

N-furcated guide, The solution of the eigenvalue equation

will provide, however, only information about the amp-

litudes of 2Q modes in all guides. Although a matrix size

of (2 Q X 2 Q ) for the eigenvalue equation is usually enough

to achieve good results for the propagation constant /3, in

calculating the power flow, 2Q modes may not be suffi-

cient to accurately represent the total power propagating

in the large guide.

Indeed, investigation of the convergence of the calcu-

lated results showed that accurate calculation of the power

flow requires the use of more modes in the large guide. The

coefficients of those additional modes can be deduced

without increasing the size of the eigenvalue matrix. This

additional information is obtained from the E-field mode-

matching matrix H, which has a size of (2P X 2Q) and has

been derived at the beginning of the formulation.

IV. PLANAR TRANSMISSION LINES ON ANISOTROPIC

SUBSTRATES

The problem of analyzing planar transmission lines on

anisotropic substrates has been studied by many investiga-

tors using quasi-static as well as hybrid-mode analyses.

Recently, a comprehensive review entitled “ Integrated-Cir-

cuit Structures on Anisotropic Substrates” has been pub-

lished by Alexopoulos [12]. This paper discusses in detail

the different techniques used in analyzing these structures

and contains an exhaustive list of references to the existing

literature. It is noted, however, that the great majority of

these references are based on quasi-static methods and in

many cases only idealized structures are considered. In this

section we will extend our formulation to take the effect of

the dielectric anisotropy into account in addition to the

effects of the metallization thickness and substrate mount-

in-g grooves.

For Iossless anisotropic substrates, the permittivity tensor

c may be written in a diagonalized form [10]. Moreover,

most of the substrates widelv used in microwave integrated
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circuit design such as sapphire and Epsilam 10 are uniaxial

crystals for which CXX= CZ=.The permittivity tensor c for

this type of crystal can then be written as

[1

6200
C=oelo. (23)

00C2

With the optic axis parallel to the y axis, the electric

field of LSE modes will lie in the plane where no anisotropic

effect is present. The solution in this case is basically the

same as in the case of an isotropic medium with a dielectric

permittivity Cz. However, for LSM modes the situation is

different because there is a component of the electric field

in the y direction. In view of [10], the solution for LSM

modes may be derived from

fi’ = y:(x) e-J%Ye-@Ziy
n

fi=jcqxfi’
n

e+n’=dp62fi’+vv. fie (24)
n n

where y: is the solution of

It can be readily shown that the transverse components

of the fields in this case have the same form as those given

in (3). However, a!, a;, Y~, and Y: are modified, becoming

(26)

~;=[;]’’2[@2p,,-(;~-p2]’/2 (27)

(28)

Thus, only a few minor changes are to be made in order to

take the dielectric anisotropy into account. This illustrates

the versatility of this approach and indicates how flexible

and simple it is in dealing with complicated structures.

V. NUMERICAL RESULTS AND DISCUSSION

In Fig. 4 we show the effective dielectric constant C,ff =

(P/ko)2 and the characteristic impedance Z versus

frequency for unilateral finlines with different slot widths

and for metallizations of t = O and t = 100 pm. Our results

are in good agreement with those obtained by Kitazawa

and Mittra [5], and our analysis can be used even for

structures with infinitely thin fins. The results indicate that

the metallization thickness has a significant effect on the

characteristic impedance. Its effect, however, on the effec-

tive dielectric constant depends strongly on the slot width

and is more pronounced for small slot widths.
To demonstrate the effect of the substrate mounting

groove, Fig. 5 shows the normalized propagation constant

of the dominant and the first higher order odd mode for

groove depths of e = O and e = 0.5 mm. It is observed that
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neglecting the mounting groove leads to a higher cutoff

frequency and a lower value for the propagation constant,

This in fact is expected and is attributed to the part of the

dielectric slab neglected in the mounting groove in’ the

“ideal” case of e = O. However, the effect of the groove on

the dominant mode is significant when the first higher

order” mode starts to propagate. In addition, unlike the

dominant mode’s cutoff frequency, that of the first higher

order mode decreases significantly when the mounting

groove is used, leading to a very large reduction in the

singie-mode bandwidth.

Fig, 6 illustrates the effect of the mounting groove on

the characteristic impedance. Our results confirlm those

recently published by Bornemann ancl Arndt [8]; the

impedance follows the behavior of the dominant mode and

starts to deviate from the iderd case (e = O) only when the

first higher order mode starts to propagate. In Fig. 7 we

also show the effect of the metallization thickness on the

single-mode bandwidth. It is observed that increasing the

metallization thickness leads to a slight increase in the

single-mode bandwidth and again the effect is more

pronounced for smaller slot widths.

To demonstrate the fast convergence of the proposed

analysis, Table I shows numerical results obtainedl for the

propagation constant of the dominant ti~d the first higher

order modes and the characteristic impedance for a

unilateral finline structure using different matrix sizes for

the eignevalue equation. A matr@ size of (6X 6) is quite

enough to provide convergent results within 0.5 percent.

It should be noted that the results given in Table I were

obtained using (25 LSE modes+ 25 LSM modes) in the

400

300

z
(Q)

200

100

‘\ -’-.,
Y

‘\
* [8] ‘\,

\e . ().f) ‘\\---- e = 0.4 mm ‘\
e = 0.5 mm ●-—.

1 I r
20 40 80 100

f6(OGHz)
Fig. 6. Characteristic impedance of a unilateral finline versus frequency

for different values of groove depth; a = 2b = 3.1 mm, S = 0.22 mm,
d= 0.4 mm, t,= 3.75, t= 5 Mm

large guide; the number of modes retained in the slot was

varied from (2 LSE modes+ 2 LSM modes) to (5 LSE

modes + 5 LSM modes). Although these results were

obtained with P/Q > b/d, as has been shown m [9], in

dealing with cascaded discontinuities the effect of the
relative convergence problem becomes noticeable when

P/Q < R (in this case R = b/d), and as long as P/Q> R

good results can be achieved. It should be also mentioned

that using a large number of modes in the large guide does

not require a considerable computation effort since the

sizes of the transmission matrices are deterr&ed by the

number of modes retained in the slot [9]. The extra

computation effort is involved in evaluating the matrix

multiplication [H ‘PjH J
In Fig. 8 we show the frequency dependence of the

effect of $e metallization thickness on the dominant and

the first higher odd mode and characteristic impedance in

bilateral finlines. The results show that unilateral and

bilateral finlines have identical behavior as far as the effect

of the metallization thickness is concerned. A comparison

is also given in this figure between our results and those

published by Schmidt and Itoh [13] using the spectral-

domain technique, and good agreement is observed for

both the propagation constant and the characteristic

impedance.

Fig. 9 illustrates the effect of the metallization thickness

on the normalized propagation constant and characteristic

impedance of the basic even and odd modes in coplanar

lines. The metallization thickness has a negligible effect on

the propagation characteristic of the odd mode over most

of the operating range. Its effect, however, on the propa-

gation of the even mode is significant over the whole

range. Increasing the metallization thickness lowers the

characteristic impedance in both cases.

Fig. 10(a) shows the effect of the mounting groove on

the propagation characteristic of the dominant and first

higher odd modes in coplanar lines where, again, behavior
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TABLE 1

THI. NORMALIZEI> PROPAGATION CONSTANT AND CHARACTERISTIC

lMIWDANCF OF A UNILATERAL FINLINE COMPUTED USING

DH FERLNT MATRIX SIZES FOR THE EIGENVALUE EQUATION

Dominant Mode, f = 60 GHz

I Matrix Size S/KO Impedance(~) I

First Higher Order Mode, f = 100 GHz

n

Matrix Size 3/K0

(4x4) 0.36959

(6x6) 0.36911

(8x8) 0.36879

(1 OX1O) 0.36851

~=~/, =31mm, d=04 mm. S= 0.22mm, t=5~m, c, =3.75

similar to the unilateral finline is observed. The dispersion

characteristics of coplanar lines with two dielectric layers

are given in Fig. 10(b). A comparison between (a) and (b)

in Fig. 10 shows that adding another dielectric layer may

not enhance or compensate for the effect of the mounting

groove.

In Fig. 11 the effect of the metallization thickness on the

first four propagating modes in suspended microstrip lines

is investigated. A noticeable effect is only observed on the

propagation characteristic of the dominant mode, and our

results agree well with those reported in [14] and [15].

Finally, we consider in Fig. 12 the effect of the metal-

lization thickness on the normalized propagation constant

in a coplanar line on sapphire substrate (Cl = 11.6, ~~ = 9.4).

We also compare our results with those given in [16] for

unshielded coplanar lines. Our results are obtained for the

shielded structure shown in Fig. 12 with electric walls at

~ b/2 for the even mode and with magnetic walls at

+ b/2 for the odd mode. A good agreement is observed

between the results for the dominant even mode. The

reason, however, for the discrepancy between the results of

the odd mode at low frequencies is that for this mode the

fields are, not tightly bound to the slots, and the waveguide

walls may not be far enough from the slots at low

frequencies to simulate the open structure.

VI. CONCLUSIONS

The numerical results presented in this paper and the

comparisons given with the other published data confirm

the validity of the proposed analysis and show its simpli-

city in treating different planar structures with com-

plicated configurations. With a reasonably small matrix

size, the achievable accuracy of the solution exceeds most

engineering requirements. The analysis can be extended to

characterize planar transmission lines on semiconductor

substrates. This also can be easily achieved since the

dielectric layers are treated separately in the formulation.

Thus, this approach promises to be useful as well in the

design of monolithic microwave integrated circuits

(MMIC’S).
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