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A Unified Hybrid-Mode Analysis for Planar
Transmission Lines with Multilayer
Isotropic /Anisotropic Substrates

RAAFAT R. MANSOUR, MEMBER, IEEE, AND ROBERT H. MACPHIE, SENIOR MEMBER, IEEE

Abstract — A unified hybrid-mode analysis is presented for determining
the propagation characteristics of multiconductor, muitilayer planar
transmission lines. The analysis employs the conservation of complex
power technique, and the emphasis is on numerical efficiency and simpli-
city. Numerical results, for finline and microstrip configurations, aim at
the clarification of the effects of the metalization thickness, dielectric
anisotropy, and substrate mounting grooves.

I. INTRODUCTION

URING THE PAST several years, a variety of tech-
: niques have been published for the characterization
of planar transmission lines, techniques wherein there has
been always a compromise between accuracy and numeri-
cal efficiency. In many cases, simplified approximations
were introduced to achieve a good numerical efficiency at
the expense of the accuracy. For example, most published
techniques do not take into account the effect of the
substrate- mounting groove. Elsewhere numerous results
are reported for idealized structures with zero metallization
thickness.

With the increasing complexity of microwave and mil-
limeter-wave circuit design, attention has been directed in
recent years to generalized approaches that can treat a
variety of planar transmission lines with more complicated
configurations. Thus, in developing a new technique the
“generalization” has become another challenging factor to
be considered in addition to the accuracy and numerical
efficiency, '

Among the published rigorous techniques for analyzing
planar transmission lines are the spectral-domain tech-
nique and the singular integral equation technique [1], [2].
Although these techniques have a very good numerical
efficiency, they do not include the effects of metallization
thickness and substrate mounting grooves. The metal-
lization thickness has been taken into account by Beyer [3]
and Vahldieck [4] using the mode-matchmg technique, and
also by Kitazawa and Mittra [5] using the network
analytical method. The effect of mounting grooves has
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been considered as well in [3] and [4], but these methods
were presented to treat only finline structures. The effect
of the metallization thickness on the propagation char-
acteristics of multiconductor planar transmission lines
has been approximately taken into account by Saad and
Schunemann [6]. However, the approximation involved in
this method is only valid for structures with large slot
widths.

Very recently, an approach based on the mode-matching
technique has been presented by Vahldieck and Borne-
mann in {7] to calculate the propagation constant, and
extended by Bornemann and Arndt in [8] to calculate the
characteristic impedance. However, as will be shown in
Section 11, this approach has a very poor numerical ef-
ficiency. Moreover, in view of the study given in [9] on the
convergence of the modal analysis numerical solution, the
mode-matching formulation used in this approach suffers
from serious convergence problems and may fail to provide
accurate results for structures with relatively small metal-
lization thickness. ‘

In this contribution, we present the details of a hybrid-
mode approach for evaluating the propagation constants
of the dominant and the higher order modes and the
characteristic impedance for planar transmission lines with
multiconductor and multilayer isotropic/anisotropic sub-
strates. Besides the versatility and flexibility of this ap-
proach in treating complicated structures, it is numerically
efficient and. it  includes the effects of the metallization
thickness and substrate mounting grooves.

II. FORMULATION OF THE PROBLEM

A generalized planar guiding structure is shown in Fig.
1. It consists of an arbitrary number of metallic strips
deposited on various interfaces of a multilayer isotrop-
ic/anisotropic dielectric substrate. The hybrid nature of
the electromagnetic field in this structure can be attributed
to ‘the coupling between LSE and LSM modes. By
considering the propagation to take place along the trans-
verse direction, the discontinuities at the various vertical
planes serve to couple the LSE and LSM modes, and the
hybrid modes are formed as a result of the repeated
reflections of LSE and LSM modes from the short-circui-
ted ends and the discontinuities. o
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Fig. 1. A generalized planar guiding structure.

The first step in the analysis uses the conservation of
complex power technique (CCPT) to treat the problem of
scattering at the N-furcated waveguide discontinuity shown
in Fig. 2 for LSE and LSM excitation. The LSE and LSM
modes may be derived from magnetic- and electric-type
Hertzian potential functions [10] having single components
directed normal to the xz plane. The appropriate solutions
for [1" and [1¢, in the ith guide are given by

m mn

N 1 nw o
h = cos —x e /Y eI 1)
jwp K, ; L, 7
Jop c,in i
N 1 nw .
¢ = ——sin—x e/ G, (2)
.]amK(.m ]

The propagation constant along the z direction is repre-
sented by the exponential factor e /%7 and assumed to be
the same in all guides and for both LSE and LSM modes.
The transverse components of the fields may then given by

) 1 7 8 nm _ nwm nm ] ety Bz
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n  =0,1,2,---for LSE
n =1,2,3,---for LSM
a

(modal admittances).
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Fig. 2. An N-furcated waveguide junction.

Let the transverse fields in the ith guide at y=0, z=0
be represented’ by an infinite sum of LSE-mode electric
fields &,; and LSM-mode electric fields é:

E(x)= . ¥ 4Ahgi(x)+ X

n=20,1,2,- - n=1,2.73,...
where A" and A¢, are the nth LSE- and LSM-mode
amplitudes respectively in the ith guide, i=0,1,2,..., N.
Because of the coupling between the LSE and LSM modes,
the three basic matrices H, P,, and P, defined in the
CCPT formulation [11] can be written

A525(x) (4)

mTn

[ 47 ]
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|H{* H{ Hf* - Hg HY|
(P2 0
P,=" 7
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[(Pe, 0 0 —— o o]
0 P, 0 —— 0 0
0 0 ) oS 0 0
p=|_ _ " __ _ _ (7b)
0 0 0 e Pé'N 0
_0 0 0 —_— 0 P;Nd

where A and e refer to LSE and LSM modes, respectively. '
H is the E-field mode-matching matrix which represents
the coupling between the modes in the large guide and

'From now on we will use the following notations: 1 denotes Hermi-
tian transpose; * denotes complex conjugate. All column matrices are
denoted with an underbar, and all matrices are in boldface.
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Fig. 3.

A generalized discontinuity

those of the N-furcated guide. P%, P{, Pj,, and Pg; for
i=1,2,3,..., N, are diagonal matrices with diagonal
elements representing the powers carried by unit ampli-
tude LSE and LSM modes in the various guides. If (P LSE
+ P LSM) modes are retained in the large guide whereas
(QLSE+ QLSM) modes are retained in the N-furcated
guide, the size of the matrices H, P,, and P, are respec-
tively 2P X2Q), (2P X2P), and 20 X2Q).

The cross-coupling between LSE and LSM modes is
readily understood from (5). However, it is interesting to
note that if we let 8 =0, all the elements of the matrices
H¢" and H' for i=1,2,..., N, would vanish. In this case
the LSE and LSM modes become TE and TM modes,
respectively, with a direction of propagation normal to the
xz plane. As has been seen in [11], these modes are not
coupled by scattering at N-furcated parallel-plate wave-
guide junctions.

In view of [9] and after some manipulations, the trans-
mission matrix of the N-furcated discontinuity can be
determined in terms of the three basic matrices H, P,, and
Py derived above for LSE and LSM excitation. The
transmission matrix T7 of the overall discontinuity shown
in Fig. 3 can then be easily obtained by simple matrix
multiplications.

The next step is to apply the transverse resonance
technique to find the eigenvalue equation for the propa-
gation constant B. Let the parameters of the overall
transmission matrix 77 be written as

41+=T1T1 42++T17; A, (83)

41—=T27£ 42++T2€ A, (8b)
where 4, (A,_), i =1,2, are the forward (backward) LSE
and LSM mode vectors at planes 117,22, as indicated in
Fig. 3. These mode vectors are also related as follows:
A =—~LiLi4,_

dyo=—LyL,4,, (%)

where
L0 Ly 0
Ly=]"! L;y=]|"? . (%
! { 0 L;° : [ 0 L;° (%)
LT" L7¢, L7" and L;° are diagonal matrices with
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diagonal elements given by

L‘h =L7¢ =e*/[wz;uf(nvr/l.)zfﬁ'z]l/zl1

1,nn 1.nn

(10a)

Lz—h — [ 7¢ = gilwlpe—(nu/LY =B},
TR

n=0,1,2,...,Q for LSE modes
n=1,2.3,...,0 for LSM modes.

In (10), /, and [/, are, respectively, the lengths of the
waveguide sections I and II shown in Fig. 3. Manipulating
(8) and (9) gives

I -[r-1iL5L [AH}:O (1)
I LiL [T -ThLs L] (|42 .

For a nontrivial solution the determinant should vanish:

(10b)

Det[LI\Lf [Tz?_ngLz_LE] + [TlTl_T1T2L;L;]] =0.
(12)

The solution for the propagation constant 8 may then be
determined by seeking the zeros of the above determinan-
tal equation. -

The size of the eigenvalue matrix given in (12) is (2Q X
20), where 2Q is the number of modes (LSE +LSM) used
in the N-furcated section, which is, in most practical
configurations, much less than the number of modes 2P
originally retained in the large guide to satisfy the edge
condition. Since in the waveguide sections I and 1I indica-
ted in Fig. 3, all the higher order modes are usually below
cutoff, the elements associated with these modes in the
matrices LT and L; are very small. Thus only the first
few modes are needed in the application of the transverse
resonance technique and a size of (2Q X2Q) for the
eigenvalue matrix is quite enough to provide accurate
results for most practical applications.

In order to compare the numerical efficiency of the
formulation presented in this paper to that reported in [7]
and [8], let us consider as an example a typical unilateral
finline structure with d /b = 0.2, where d is the slot width
and b is the waveguide height. Let us also assume. that
P=25and Q=35, ie, (25 LSE modes+25 LSM modes)
are retained in the large guide, and (5 LSE modes+5 LSM
modes) are retained in the slot region. To avoid the relative
convergence problem, it is noted that these numbers of
modes are chosen such that P/Q = b/d. Thus, the size of
the eigenvalue matrix derived in our formulation is only
(10<10). On the other hand, as stated in [7], with 25
summation terms in the large waveguide (25 TE modes + 25
TM modes) the formulation handles transmission matrices
of size (100 100) and leads to an eigenvalue equation of
matrix size (50 < 50).

The considerable reduction of the matrix size we have
achieved here is attributed to the use of the improved
transmission matrix formulation for cascaded discontin-
uities, which has been introduced in [9]. This formulation
does not require the use of an equal number of modes, which
makes it possible to impose the edge condition and
consequently guarantees accurate evaluation of the trans-
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mission parameters. Moreover it makes it possible to derive
an eigenvalue matrix of size (2Q X2Q) rather than 2P X
2P).

I

With the eigenvalue B calculated, solving the eigenvalue
equation for the eigenvector gives the field amplitudes in
the various regions which are needed in the calculation of
the characteristic impedance. There has been a consider-
able interest over the past several years in the theoretical
investigation of the impedance. Most published results,
however, are for structures with zero metallization thick-
ness and no mounting grooves. In this contribution the
effects of these parameters on the characteristic impedance
based on the voltage—power definition will be investigated.

| 4%

5P P= ;f, (13)
where V' is the slot voltage, which is obtained by line
integrating the electric field over the width of the ap-
propriate slot; the summation is on all guides involved and
P, is the power flow in guide i:

THE CHARACTERISTIC IMPEDANCE

Z::

(14)

E and H, are, respectively, the transverse components
(with respect to z) of the electric and magnetic fields in the
ith guide:

1 L
P,=—2—RefE,><H,*-Efzdr.

— . —-)h —
I Z <1)m + Z ¢zen (15)
n=0,1,2, -- n=1,2.3,---
= = N
I lpin + Z Hbfn (16)
n=0,1,2,--- n=1,2,3,---
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KC' m Ll ’
bW Qf, and W are scalar functions given by
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A;,., A,,_ denote, respectively, the amplitude of the inci-
dent and the reflected nth mode in guide i. Substituting
(15)—(18) into (14) gives

Pz - chh + Plee+ Pleh

(19)

where

PM= ¥ P/ 040! (20)

l n=0,1,2,--- 4"’” "

ce (06,8L {

Prr= L Wf WeWredy  (21)

—JjL, n7w

Peh:_

e Y ) T Jrenosrd
ja*'L nw
* f WEW,*" dy (22)

In(20) I',=2 for n=0and I, =1 for n=1,2,--

Originally, it was assumed that 2 P modes were retained
in the large guide and 2Q modes were retained in the
N-furcated guide. The solution of the eigenvalue equation
will provide, however, only information about the amp-
litudes of 2Q modes in all gnides. Although a matrix size
of (2Q x2Q) for the eigenvalue equation is usually enough
to achieve good results for the propagation constant 8, in
calculating the power flow, 2Q modes may not be suffi-
cient to accurately represent the total power propagating
in the large guide.

Indeed, investigation of the convergence of the ca]cu-
lated results showed that accurate calculation of the power
flow requires the use of more modes in the large guide. The
coefficients of those additional modes can be deduced
without increasing the size of the eigenvalue matrix. This
additional information is obtained from the E-field mode-
matching matrix H, which has a size of (2P X20Q) and has
been derived at the beginning of the formulation.

IV. PLANAR TRANSMISSION LINES ON ANISOTROPIC
SUBSTRATES

The problem of analyzing planar transmission lines on
anisotropic substrates has been studied by many investiga-
tors using quasi-static as well as hybrid-mode analyses.
Recently, a comprehensive review entitled ““Integrated-Cir-
cuit Structures on Anisotropic Substrates” has been pub-
lished by Alexopoulos [12]. This paper discusses in detail
the different techniques used in analyzing these structures
and contains an exhaustive list of references to the existing
literature. It is noted, however, that the great majority of
these references are based on quasi-static methods and in
many cases only idealized structures are considered. In this
section we will extend our formulation to take the effect of
the dielectric anisotropy into account in addition to the

. effects of the metallization thlckness and substrate mount-

ing grooves.

For lossless anisotropic substrates, the permittivity tensor
e may be written in a diagonalized form [10]. Moreover,
most of the substrates widely used in microwave integrated
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Fig. 4. Effective dielectric constant and characteristic impedance versus frequency in unilateral finlines with different values

of slot width; ¢ =2b=4.7752 mm, §

circuit design such as sapphire and Epsilam 10 are uniaxial

crystals for which €,, =¢,.. The permittivity tensor € for

this type of crystal can then be written as

e, 0 0
e=|0 ¢ 0 (23)
0 0 e

With the optic axis parallel to the y axis, the electric
field of LSE modes will lie in the plane where no anisotropic
effect is present. The solution in this case is basically the
same as in the case of an isotropic medium with a dielectric
permittivity €,. However, for LSM modes the situation is
different because there is a component of the electric field
in the y direction. In view of [10], the solution for LSM
modes may be derived from

- e

[T =¥i(x)e e,
n
- e

K= joe,v X [1
n

(24)

— € - €
e =ope,[1 +vv[1
R n
where W7 is the solution of

2

€ © e
a7 D)+ e = ()

P =B ¥i(x) =0. (25)

It can be readily shown that the transverse components
of the fields in this case have the same form as those given

=0.127 mm, h; =2.3876 mm, €, =3.8.

in (3). However, o, a¢, Y, and Y? are modified, becoming
1,2
) -#|

S e

(26)

aﬁ we
AR (28)
wpt al

Thus, only a few minor changes are to be made in order to
take the dielectric anisotropy into account. This illustrates
the versatility of this approach and indicates how flexible
and simple it is in dealing with complicated structures.

V. NUMERICAL RESULTS AND DISCUSSION

In Fig. 4 we show the effective dielectric constant e
(B/ky)* and the characteristic impedance Z versus
frequency for unilateral finlines with different slot widths
and for metallizations of =0 and ¢ =100 pm. Our results
are in good agreement with those obtained by Kitazawa
and Mittra [5], and our analysis can be used even for
structures with infinitely thin fins. The results indicate that
the metallization thickness has a significant effect on the
characteristic impedance. Its effect, however, on the effec-
tive dielectric constant depends strongly on the slot width
and 1s more pronounced for small slot widths.

To demonstrate the effect of the substrate mounting
groove, Fig. 5 shows the normalized propagation constant
of the dominant and the first higher order odd mode for
groove depths of e =0 and e = 0.5 mm. It is observed that
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neglecting the mounting groove leads to a higher cutoff
frequericy and a lower value for the propagation constant.
This in fact is expected and is attributed to the part of the
dielectric slab neglected in the mounting groove in' the
“ideal” case of e = 0. However, the effect of the groove on
the dominant mode is significant when the first higher
order mode starts to propagate. In addition, urnlike the
dominant mode’s cutoff frequency, that of the first higher
order mode decreases significantly when the mounting
groove is used, leading to a very large reduction in the
single-mode bandwidth.

Fig. 6 illustrates the effect of the mounting groove on
the characteristic impedance. Our results confirm those
recently published by Bornemann and Arndt [8]; the
impedance follows the behavior of the dominant mode and
starts to deviate from the ideal case (e = 0) only when the
first higher order mode starts to propagate. In Fig. 7 we
also show the effect of the metallization thickness on the
single-mode bandwidth. It is observed that increasing the
metallization thickness leads to a slight increase in the
single-mode bandwidth and again the effect is more
pronounced for smaller slot widths.

To demonstrate the fast convergence of the proposed
analysis, Table I shows numerical results obtained for the
propagation constant of the dominant and the first higher
order modes and the characteristic impedance for a
unilateral finline structure using different matrix sizes for
the eignevalue equation. A matrix size of (6X6) is quite
enough to provide convergent results within 0.5 percent.

It should be noted that the results given in Table I were
obtained using (25 LSE modes+25 LSM modes) in the
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Fig. 6. Characteristic impedance of a unilateral finline versus frequency
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large guide; the number of modes retained in the slot was
varied from (2 LSE modes+2 LSM modes) to (5 LSE
modes+5 LSM modes). Although these results were
obtained with P/Q > b/d, as has been shown in [9], in
dealing with cascaded discontinuities the effect of the
relative convergence problem becomes noticeable when
P/Q <R (in this case R =b/d), and as long as P/Q > R
good results can be achieved. It should be also mentioned
that using a large number of modes in the large guide does
not require a considerable computation effort since the
sizes of the transmission matrices are determined by the
number of modes retained in the slot [9]. The extra
computation effort is involved in evalpating the matrix
multiplication [ H P{H ].

In Fig. 8 we show the frequency dependence of the
effect of the metallization thickness on the dominant and
the first higher odd mode and characteristic impedance in
bilateral finlines. The results show that unilateral and
bilateral finlines have identical behavior as far as the effect
of the metallization thickness is concerned. A comparison
is also given in this figure between our results and those
published by Schmidt and Itoh [13] using the spectral-
domain technique, and good agreement is observed for
both the propagation constant and the characteristic
impedance.

Fig. 9 illustrates the effect of the metallization thickness
on the normalized propagation constant and characteristic
impedance of the basic even and odd modes in coplanar
lines. The metallization thickness has a negligible effect on
the propagation characteristic of the odd mode over most
of the operating range. Its effect, however, on the propa-
gation of the even mode is significant over the whole
range. Increasing the metallization thickness lowers the
characteristic impedance in both cases.

Fig. 10(a) shows the effect of the mounting groove on
the propagation characteristic of the dominant and first
higher odd modes in coplanar lines where, again, behavior
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TABLE 1
THL NORMALIZED PROPAGATION CONSTANT AND CHARACTERISTIC
IMPEDANCE OF A UNILATERAL FINLINE COMPUTED USING
D11 FERLNT MATRIX SIZES FOR THE FIGENVALUE EQUATION

Dominant Mode, f = 60 GHz

Matrix Size 3/K, Impedance ( (1)
(4x4) 1.1855 257.03
(6x6) 1.1866 258.75
(8x8) 1.1866 260.10

(10x10) 1.1854 260.83

First Higher Order Mode, f = 100 GHz

Matrix Size 3/K,
(4x4) 0.36959
(6x6) 0.36911
(8x8) 0.36879

(10x10) 0.36851

a=2b=31mm, d=04mm, $=022mm, =5 pm, ¢, =3.75.

similar to the unilateral finline is observed. The dispersion
characteristics of coplanar lines with two dielectric layers
are given in Fig. 10(b). A comparison between (a) and (b)
in Fig. 10 shows that adding another dielectric layer may
not enhance or compensate for the effect of the mounting
groove.

In Fig. 11 the effect of the metallization thickness on the
first four propagating modes in suspended microstrip lines

is investigated. A noticeable effect is only observed on the
propagation characteristic of the dominant mode, and our
results agree well with those reported in [14] and [15].
Finally, we consider in Fig. 12 the effect of the metal-
lization thickness on the normalized propagation constant
in a coplanar line on sapphire substrate (¢; =11.6,¢, = 9.4),
We also compare our results with those given in [16] for
unshielded coplanar lines. Our results are obtained for the
shielded structure shown in Fig. 12 with electric walls at
+ b/2 for the even mode and with magnetic walls at
+b/2 for the odd mode. A good agreement is observed
between the results for the dominant even mode. The
reason, however, for the discrepancy between the results of
the odd mode at low frequencies is that for this mode the
fields are not tightly bound to the slots, and the waveguide
walls may not be far enough from the slots at low
frequencies to simulate the open structure.

VI

The numerical results presented in this paper and the
comparisons given with the other published data confirm
the validity of the proposed analysis and show its simpli-
city in treating different planar structures with com-
plicated configurations. With a reasonably small matrix
size, the achievabie accuracy of the solutton exceeds most
erigineering requirements. The analysis can be extended to
characterize planar transmission lines on semiconductor
substrates. This also can be easily achieved since the
dielectric layers are treated separately in the formulation.
Thus, this approach promises to be useful as well in the
design of monolithic microwave integrated -circuits
(MMIC’s).

CONCLUSIONS
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